YOUR WATER!
The City of Longmont is pleased to present the 2019 Drinking Water Quality Report. Inside you will find information about Longmont’s drinking water and results of the most recent tests that were done on the drinking water.

The City of Longmont is proud to report we did not have any drinking water violations last year.

TABLE OF CONTENTS
1 Where Longmont Gets Its Water
2 What’s in the Water Before Treatment?
3 What about Longmont’s Water?
4 How is the Water Treated?
5 Bottled Water, Health Concerns, and Lead in Drinking Water
6 What is in Your Tap Water?
7 Test Results
9 Frequently Asked Questions
10 Where to Get More Information
11 Longmont Water Fast Facts
12 Save Water and Save Our Waterways

SUSTAINABILITY OBJECTIVE:
Preserve the natural environment in our watershed and provide a reliable, high quality water supply that protects public health.

If you prefer to receive this report in printed format, please call 303-651-8416.
WHERE LONGMONT GETS ITS WATER

The City of Longmont’s drinking water is all surface water that comes from streams, lakes and reservoirs that are fed by snowmelt and rainfall. The sources of Longmont’s drinking water are:

The **St. Vrain Creek** watershed includes North and South St. Vrain Creeks, and St. Vrain Creek. The North St. Vrain Creek watershed includes wilderness areas and portions of Rocky Mountain National Park. Ralph Price Reservoir is used to store water from North St. Vrain Creek. The South St. Vrain Creek watershed extends into the Indian Peaks Wilderness. The North and South forks combine to form St. Vrain Creek near the town of Lyons. The Highland Ditch is used to convey water from the St. Vrain for treatment. During this reporting year, 42% of Longmont’s water came from North St. Vrain Creek and St. Vrain Creek. Water from St. Vrain Creek below the Town of Lyons is conveyed to Burch Lake by the Palmerton Ditch. Burch Lake was not used during this reporting year.

The **Colorado and Fraser Rivers** in Grand County. These sources are delivered to Longmont via the Colorado-Big Thompson (C-BT) project, operated by the Northern Colorado Water Conservancy District. Water from reservoirs in Grand County flows through the Adams Tunnel and is delivered to Longmont through Carter Lake via the St. Vrain Supply Canal and Southern Water Supply Pipeline. During this reporting year, 58% of Longmont’s water came from C-BT sources.

These water sources were treated at the City’s Nelson-Flanders water treatment plant. The Wade Gaddis water treatment plant was not operated in the reporting year.

The sources, reservoirs and plants are shown on the map below.
WHAT’S IN THE WATER
BEFORE TREATMENT?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.
Longmont is fortunate to have high quality water sources that originate in mountain watersheds. The North St. Vrain Creek watershed is mainly wilderness and is affected only by naturally occurring elements. Water from the South St. Vrain Creek may be impacted by runoff from abandoned mines. The watersheds that feed the C-BT project may contain contaminants related to recreation, wastewater treatment plant effluents and runoff from pastures. St. Vrain Creek below Lyons is transferred to the treatment plants by irrigation ditches and can be affected by agricultural and livestock activities.

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by Longmont and other public water systems. The City’s treatment plants reduce any contaminants in the source waters to levels that meet, and usually surpass, all Federal and State requirements.

A Source Water Assessment Report for the City of Longmont has been prepared by the Colorado Department of Public Health and Environment (CDPHE). A copy of the report can be obtained by calling 303-651-8416 or by accessing the SWAP website at https://www.colorado.gov/cdphe/source-water-assessment-and-protection-swap. The Source Water Assessment Report is a screening-level evaluation of the likelihood that a potential contamination problem could occur, not an indication that potential contamination has occurred or will occur. The assessment results are provided as a starting point for public water systems to evaluate potential contaminant risks.

The City collects and tests samples of water throughout the watershed as part of its watershed monitoring program. Monitoring locations include reservoirs, St. Vrain Creek and major tributaries. The watershed monitoring program provides important information on Longmont’s drinking water sources and assesses the quality of water throughout the watershed. Information on the water sources and upper watershed can be used to help with the operation of the City’s water treatment plants to maintain our high quality drinking water.

Longmont is also participating in watershed monitoring that is being coordinated by the Northern Colorado Water Conservancy District (NCWCD) to evaluate test methods and levels of emerging contaminants such as pharmaceuticals, pesticides, hormones, etc. in our drinking water sources. More information on the NCWCD study can be obtained from NCWCD at http://www.northernwater.org.
Last year, Longmont treated an average of 22 MGD in the summer and 7 MGD during the winter months.

Steps Involved in Water Treatment

1. **Coagulation** — Aluminum salts and chemicals called polymers are mixed with the water to make the particles in the water stick together.

2. **Flocculation** — The coagulated particles are slowly mixed so that they can collide and form larger particles, known as “floc.”

3. **Sedimentation** — Water flows through a large tank which allows the “floc” to settle to the bottom of the tank and be removed.

4. **Filtration** — Water is passed through filters made of sand and anthracite coal to filter out remaining particles.

5. **Disinfection** — Chlorine is added to kill any remaining bacteria or other disease-causing organisms.

6. **Fluoridation** — Fluoride is added to help prevent tooth decay.

7. **Stabilization** — Small amounts of soda ash (sodium carbonate) or sodium hydroxide are added to make the water less corrosive to pipes and plumbing.
WHAT ABOUT BOTTLED WATER?
In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by Longmont and other public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

As noted previously in this report, all drinking water, including bottled water, comes from sources that may contain at least small amounts of some contaminants. The FDA limits are intended to provide consumers of bottled water with the same protection for public health as other sources of drinking water. However, the regulations and testing requirements for contaminants in bottled water are much less stringent than for tap water.

More information about bottled water, possible contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791. Another source of information is the Natural Resources Defense Council, which has tested many brands of bottled water. The results of those tests are available on the internet at https://www.nrdc.org/stories/truth-about-tap

SPECIAL HEALTH CONCERNS
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminates are available from the Safe Drinking Water Hotline at 1-800-426-4791.

LEAD IN DRINKING WATER
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from material and components associated with service lines and home plumbing. The City of Longmont is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.
The City’s Water Quality Laboratory, which is State-certified, performs many of the tests on your drinking water. Contract labs are used for tests that the Water Quality Laboratory does not do in-house. 11,949 tests were performed on the City’s drinking water last year, 11,144 of which were performed by the City’s Water Quality Laboratory. This ensures that the water delivered to your tap meets or exceeds the standards set by the EPA and the Colorado Department of Public Health and Environment (CDPHE).

Last year, as in years past, your tap water met all EPA and State drinking water health standards. The City of Longmont safeguards its water supplies and once again, we are proud to report that our system did not violate a maximum contaminant level or any other water quality standard. The following tables show the most recent test results for Longmont’s water and the federal and state requirements. The CDPHE allows monitoring for some contaminants less than once per year because the concentrations of those contaminants do not change frequently. Some of the data in the tables, though representative of our water, is more than one year old. Unless otherwise noted, the results are from tests performed last year.

Definitions of the technical terms in the tables are included at the end of the tables.

The City of Longmont is proud to report that we met all drinking water regulations last year.
TABLE I - DRINKING WATER QUALITY: REGULATED CONTAMINANTS

Table I shows the most recent test results for contaminants that were detected in Longmont’s drinking water and have limits set by EPA or CDPHE regulations. Possible sources of the contaminants are noted in the last column. These are not necessarily the sources of contaminants in Longmont’s water.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Range of Levels</th>
<th>MCL</th>
<th>MCLG</th>
<th>Probable Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic and Physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium<sup>1</sup></td>
<td>0.01 ppm</td>
<td>2 ppm</td>
<td>2 ppm</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride<sup>1</sup></td>
<td>0.68 ppm</td>
<td>4 ppm</td>
<td>4 ppm</td>
<td>Added during treatment to promote strong teeth</td>
</tr>
<tr>
<td>Turbidity<sup>1</sup></td>
<td>0.012 to 0.074 NTU; 100% of samples <0.3 NTU</td>
<td>1.0 NTU and more than 95% of samples <0.3 NTU</td>
<td>Not Applicable</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Nitrate (NO<sub>3</sub>)</td>
<td><0.10 ppm</td>
<td>10 ppm</td>
<td>10 ppm</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Bacteria and Microorganisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>Present in 0 samples out of 1,365</td>
<td>Treatment technique used to trigger follow-up assessments of the water system.</td>
<td>Not Applicable</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>E. coli Bacteria</td>
<td>Not Detected</td>
<td>0% Present</td>
<td>Human and animal waste</td>
<td></td>
</tr>
<tr>
<td>Disinfection and Disinfection Byproducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine<sup>4</sup></td>
<td>0.35 to 1.35 ppm; Max Monthly Average= 0.96 ppm</td>
<td>4 ppm (MRLD)</td>
<td>4 ppm (MRLDG)</td>
<td>Added during treatment for disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids</td>
<td>15.0 to 28.3 ppb; Max LRAA=23.6 ppb</td>
<td>60 ppb</td>
<td>0 ppb</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>25.4 to 47.7 ppb; Max LRAA=36.2 ppb</td>
<td>80 ppb</td>
<td>0 ppb</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Radioactivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha Emitters<sup>1</sup></td>
<td>0.6 pCi/L</td>
<td>15 pCi/L</td>
<td>0 pCi/L</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Combined Radium (226+228)<sup>1</sup></td>
<td>0.2 pCi/L</td>
<td>5 pCi/L</td>
<td>0 pCi/L</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>Source Water: 2.63 to 4.64 ppm; Average= 3.37 ppm; Treated Water: 1.19 to 1.88 ppm; Average= 1.44 ppm; Removal= 45.0 to 68.1%; Average= 56.6%</td>
<td>TOC is a measure of the effectiveness of a treatment technique used by the water treatment plant to remove organic material.<sup>4</sup></td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II - DRINKING WATER QUALITY: CORROSION CONTROL

The City began a corrosion control program in 1987 to reduce lead and copper levels. Sodium carbonate or sodium hydroxide is added at the treatment plants to adjust pH and alkalinity of the water and reduce its corrosiveness.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Range of Levels</th>
<th>Action Level (AL)</th>
<th>MCLG</th>
<th>Probable Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>90th percentile= 2.2 ppb; Max= 14.7 ppb</td>
<td>90th percentile: 15 ppb</td>
<td>0 ppb</td>
<td>Lead and copper in drinking water mainly comes from corrosion of plumbing and fixtures.</td>
</tr>
<tr>
<td>Copper</td>
<td>90th percentile= 0.0688 ppm; Mean= 0.130 ppm</td>
<td>90th percentile: 1.3 ppm</td>
<td>1.3 ppm</td>
<td>Lead and copper in drinking water mainly comes from corrosion of plumbing and fixtures.</td>
</tr>
<tr>
<td>pH</td>
<td>7.8 to 8.8 SU; Average= 8.3 SU</td>
<td>For Longmont, the CDPHE established allowable range for pH of 7.2 to 9.5 SU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>38.7 to 24.6 ppm; Average= 30.5 ppm</td>
<td>For Longmont, the CDPHE established allowable range for alkalinity of 7 to 77 ppm.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE III - DRINKING WATER QUALITY: ADDITIONAL COMPOUNDS
Table III shows test results for parameters that do not have a specific MCL.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Range of Levels</th>
<th>Probable Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>11 to 14.9 ppm</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Calcium</td>
<td>5.8 to 8.0 ppb</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.4 to 0.7 ppm</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.8 to 1.4 ppm</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Manganese</td>
<td>Not Detected to 4.7 ppb</td>
<td>Naturally occurring element and essential nutrient used in fertilizer, steel production, batteries, fireworks and in drinking water and wastewater treatment plants.</td>
</tr>
<tr>
<td>Aluminium</td>
<td>17 to 34 ppb</td>
<td>Erosion of natural deposits and byproduct of the drinking water treatment process</td>
</tr>
<tr>
<td>Zinc</td>
<td>Not Detected to 0.006 ppm</td>
<td>Erosion of natural deposits; Corrosion of plumbing and fixtures.</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>18 to 26 ppm</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chloroform</td>
<td>23.0 to 45.5 ppb</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Dichloroacetic acid</td>
<td>6.4 to 13.0 ppb</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.7 to 3.0 ppb</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
<tr>
<td>Trichloroacetic acid</td>
<td>8.6 to 15.3 ppb</td>
<td>Byproduct of drinking water chlorination</td>
</tr>
</tbody>
</table>

Definitions of terms

90th percentile: 90% of the samples were below this level.

AL — Action Level: The concentration of a contaminant which, if exceeded triggers treatment or other requirements which a water system must follow.

LRAA — Locational Running Annual Average: The average of analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.

MCL — Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG — Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MRDL — Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG — Maximum Residual Disinfectant Level Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NFWTTP: Nelson Flanders Water Treatment Plant
NTU — Nephelometric Turbidity Unit: Used to describe the cloudiness of water.

pC/L — PicoCuries per Liter: As a measure of radioactivity.

pH — The measure of how acidic or basic the water is, reported in Standard Units (SU). See SU definition for more information.

ppb — parts per billion: A measure of concentration of a contaminant. Comparable to one penny in $10,000,000.

ppm — parts per million: A measure of concentration of a contaminant. Comparable to one penny in $10,000.

ppt — parts per trillion: A measure of concentration of a contaminant. Comparable to one penny in $10,000,000,000.

SU — Standard Units: The unit of measure for pH. A pH of 7 SU is considered neutral. A pH less than 7 is acidic and a pH greater than 7 is basic.

Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

WGWTP: Wade Gaddis Water Treatment Plant
My water smells and tastes like chlorine. Why? What can I do about it?
All municipal water providers are required by Federal and State regulations to disinfect their water and maintain a residual level of disinfectant throughout the distribution system. In Longmont, the chlorine levels are set at the water treatment plants, which are closer to the northwest portion of the City’s distribution system. If you live in one of the neighborhoods on the north or west side of the City, chlorine may be more noticeable than in other parts of town. If you find the taste or odor objectionable, you can use after-market filters or simply let the water sit for a period of time to dissipate the chlorine.

My water has a swampy or fishy smell. What’s causing this and what can I do about it?
Algae are a source of compounds that cause taste and odor and the type and quantity of algae vary in the water sources throughout the year. Water treatment does not completely remove all of these compounds. Activated carbon is used at the water plants at certain times of the year to reduce taste and odor. These taste and odor issues do not necessarily indicate the water is unsafe to consume.

Is Longmont’s water supply adequate to meet the demands of growth and drought in the future?
City Council has adopted a benchmark for supply that calls for maintaining sufficient water supplies to meet water demands for 10 years into the future in a 100-year drought. In addition, 10% of our future water supply is anticipated to come through conservation measures, a goal that is supported by the conservation practices outlined in the City’s Sustainability Plan and the conservation strategies outlined in the Water Efficiency Master Plan. The City also has a water policy (adopted in 1963) that requires growth to “pay its own way” with respect to water. Developers of land annexed to the City are required to provide the water needed to serve the development. The City’s existing water resources, the conservation goals and application of the water policy have resulted in a water supply that exceeds demand and meets the City’s drought benchmark. For more information on water conservation or the City’s water supply, call 303-651-8416.

Who should I contact if I have concerns about taste, odor or color in the water?
The City’s Water Quality Laboratory responds to water quality concerns and questions. You may call the lab at 303-651-8666 for any additional information.

My water sometimes has a yellow or brown color. What’s causing this and what can I do about it?
The yellow or brown water is usually caused by flushing of the distribution system. Flushing of the distribution system is done at least once a year, typically in April, to maintain water quality and to ensure that fire hydrants are operational. The flushing schedules are posted in the newspaper and on the City’s website. Local flushing may be done at any time of the year to address specific problem areas. Color in the water from flushing operations is temporary and not harmful. The City recommends that you limit water use and avoid the use of hot water while flushing is being done in your neighborhood. The color can often be eliminated by letting your cold water run for several minutes.

I think the water tastes or smells different in the summer and winter, why?
The changes in taste or odor usually occur in late spring and early winter and are a result of different combinations of water sources that are used to meet seasonal demands. The sources are discussed in the “Where Longmont Gets Its Water” section of this report. The water that is used to meet summer demands generally has higher mineral content and some people notice the difference when the water plants change sources.

I have white particles in my water that clog my faucet aerators or settle to the bottom of a glass. What are these and are they harmful?
White particles in your water may be caused by deterioration of the “dip” tube in your hot water heater. The dip tube is a plastic tube that feeds the cold water to the water heater. The particles are not toxic. You can test for this problem by taking the following steps:
• Remove your faucet aerator.
• Fill pans or your sink separately with cold and hot water.
• Look for white particles that settle to the bottom. If the particles only show up in the hot water, the problem is in your water heater. Either the dip tube or the heater will need to be replaced.
Is Longmont’s water soft or hard?
Longmont’s water is soft and typically contains only 1-2 grains per gallon of hardness, a very small amount of dissolved minerals. A water softener is not recommended.

Why is my water cloudy when it comes out of the tap but clears up after several seconds?
This is caused by small bubbles of air that are dissolved in the water. Some air is already in the water delivered to your tap and more can be added by aerators in faucets. During the winter, when tap water is colder, there is more dissolved air in the water; as the water warms up, there will be bubbles which clear from the bottom to the top of the glass. If the water stays cloudy even after it has been in a glass for several minutes, please call 303-651-8666 for additional information.

There has been a lot of recent publicity concerning the oil and gas industry’s practice of hydraulic fracturing or “fracking” and its potential effect on water supplies. Is Longmont’s drinking water affected by fracking?
Longmont obtains its water from rural and mountain watersheds that are not affected by the impact of oil and gas drilling operations. As discussed in the “What about Longmont’s Water?” section of this report, actual and potential pollutant sources in our watershed are identified in a source water assessment that was completed by the Colorado Department of Public Health and Environment (CDPHE). Neither CDPHE nor the City has found any sources of contamination of our water supplies from oil and gas wells. In addition, all of our drinking water sources are surface water, not groundwater. Groundwater is more likely to be impacted by drilling or well operations. The Colorado Oil and Gas Conservation Commission (COGCC) has much more information on its website about the oil and gas industry, including locations of wells and discussions of hydraulic fracturing and water quality. For more information, please visit http://cogcc.state.co.us.

What is the City doing to monitor lead in drinking water?
In 2017 the CDPHE revised the monitoring frequency for lead and copper, the City is now required to monitor annually. Lead and copper monitoring requires evaluation of a combination of residences with either a lead component or copper pipe with lead solder. At this time, the City is not aware of any customers with service lines that are entirely made of lead. Any service connections that could have lead components are being replaced as the City renews water distribution lines as part of its ongoing water line replacement program. The City’s water treatment corrosion control program minimizes corrosion of plumbing in homes. The concentrations of lead in samples taken throughout Longmont are below the action levels in the drinking water regulations, as shown in the tables in this report. The City performs annual lead testing as per drinking water regulations.

Does Longmont test its water for pharmaceuticals or other similar chemicals?
Longmont has tested for chemicals in the St. Vrain watershed and is also participating in a testing program led by Northern Colorado Water Conservancy District, which manages the Colorado-Big Thompson water supplies. Trace concentrations of a few chemicals have been found in the water sources. The sources and significance of these trace levels is unknown. Longmont will continue to monitor scientific and medical information related to the effects of pharmaceuticals and other similar chemicals in our source water. There is currently no evidence that these chemicals have any adverse effects on humans at the very low levels that have been detected. Longmont is fortunate to have water from rural and mountain watersheds that are not affected by urban land uses that could be a source of chemical contaminants. If you have questions, please call Public Works and Natural Resources at 303-651-8416.

Is the water tested for contaminants other than those listed in the Tables in this report?
Longmont tests for many other contaminants not listed in this report. The Water Quality Laboratory samples and tests for over 50 compounds, including organics, inorganics and metals. The most recent tests showed no detectable levels of these contaminants in Longmont’s water.

Where can I get more information?

Water Quality Laboratory:
303-651-8666
(for Drinking Water questions and concerns)

Public Works and Natural Resources Customer Service Center:
303-651-8416
Irrigation of outdoor landscaping is the largest use of water in the city. Reducing the water you use for irrigation leaves more water for the future and saves you money.

Some of the things that can be done to conserve water can also reduce the pollution in our environment. Any water that goes into the soil will not end up on driveways, sidewalks, streets or gutters where it can carry pollutants to the storm drains. Storm drains carry these pollutants directly to our creeks and waterways without treatment, which can harm aquatic life and affect downstream uses.

You can save water, save money and help the environment by:

• Making sure your sprinkler system does not waste water
• Using low water plants that are adapted to our climate
• Preparing your soil with organic materials
• Using landscaping features that allow water from both sprinklers and rainfall to soak into the ground instead of running off

The City, in partnership with Resource Central, offers several programs to help you reduce your outdoor water use. The number is limited and it’s first come, first served. Call 303-999-3820 x217 or visit ResourceCentral.org

This is a professionally designed xeriscape garden kit that includes water-conserving plants and a "plant-by-number" plan.

Interested in Public Meetings?
The City of Longmont City Council meets on Tuesdays at 7 p.m. at the Civic Center, 350 Kimbark Street. There are two citizen boards that advise City Council on water issues: the Water Board meets the 3rd Monday of each month at 3 p.m. and the Sustainability Advisory Board meets the 3rd Wednesday of each month at 3:30 p.m. Both boards meet at the City Service Center, 1100 S. Sherman St.

Este folleto contiene informacion importante sobre la calidad del agua en su comunidad. Para solicitar el informe anual de calidad del agua potable de Longmont en Español, marque 303-651-8416.
SOLVE WATER AND SAVE OUR WATERWAYS

Irrigation of outdoor landscaping is the largest use of water in the city. Reducing the water you use for irrigation leaves more water for the future and saves you money.

Some of the things that can be done to conserve water can also reduce the pollution in our environment. Any water that goes into the soil will not end up on driveways, sidewalks, streets or gutters where it can carry pollutants to the storm drains. Storm drains carry these pollutants directly to our creeks and waterways without treatment, which can harm aquatic life and affect downstream uses.

You can save water, save money and help the environment by:
- Making sure your sprinkler system does not waste water
- Using low water plants that are adapted to our climate
- Preparing your soil with organic materials
- Using landscaping features that allow water from both sprinklers and rainfall to soak into the ground instead of running off

By following these tips, you are helping create a more sustainable Longmont. Learn more at bit.ly/sustainability-longmont.

The City, in partnership with Resource Central, offers several programs to help you reduce your outdoor water use. The number is limited and it’s first come, first served. Call 303-999-3820 x217 or visit ResourceCentral.org

Garden in a Box.
This is a professionally designed xeriscape garden kit that includes water-conserving plants and a “plant-by-number” plan.

Here are some things you can do to help water soak into the soil instead of running off and carrying pollutants into the storm drains.

Create a drainage way, or swale, that directs stormwater away from your house to landscaped areas and allows it to soak into the soil.

Use the proper sprinkler types and adjust them so that they water the landscaping and not the sidewalk, street or driveway.

Consider using permeable materials for your garden walkways.

Add organic materials, such as compost, to your soil before planting so that the soil can retain more water. Soils in this area can take up to three cubic yards of organic material (such as compost) for every 1000 square feet.

To find more about water conservation, visit our web page at bit.ly/water-matters or call us at 303-651-8416.

To learn more about stormwater quality visit KeepItCleanPartnership.org